Search results for "Biogenic crystals"

showing 1 items of 1 documents

Anisotropic lattice distortions in biogenic calcite induced by intra-crystalline organic molecules.

2006

9 pages; International audience; We have performed precise structural measurements on five different calcitic seashells by high-resolution X-ray powder diffraction on a synchrotron beam line and by laboratory single crystal X-ray diffraction. The unit cell parameters a and c of biogenic calcite were found to be systematically larger than those measured in the non-biogenic calcite. The maximum lattice distortion (about 2.10(-3)) was detected along the c-axis. Under heat treatment above 200 degrees C, a pronounced lattice relaxation was observed, which allowed us to conclude that anisotropic lattice swelling in biogenic calcite is induced by organic macromolecules incorporated within the sing…

DiffractionBiomineralizationMESH : Calcium CarbonateMESH: Bivalvia02 engineering and technologyCrystallography X-Ray01 natural scienceslaw.inventionchemistry.chemical_compoundStructural BiologylawMESH : BivalviaOstreaMESH : AnisotropyMESH: AnimalsOrganic ChemicalsCrystallizationAnisotropyMESH: CrystallizationCalciteMESH: OstreaSynchrotron radiationCalciteCrystal growth and nucleationMESH : Organic Chemicals021001 nanoscience & nanotechnologyMESH: Calcium CarbonateMESH : CrystallizationX-ray crystallographyCrystallization0210 nano-technologyMaterials scienceMESH : Crassostrea010402 general chemistryCalcium CarbonateAnimalsCrassostreaIntra-crystalline organic molecules[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/BiomaterialsBiogenic crystalsMESH : OstreaMESH: Organic ChemicalsMESH: Crystallography X-Ray[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/BiomaterialsBivalvia0104 chemical sciencesX-ray diffractionCrystallographyMESH: CrassostreachemistryMESH: AnisotropyAnisotropyMESH : AnimalsMESH : Crystallography X-RaySingle crystalPowder diffractionBiomineralization
researchProduct